Fully automated and long term stable biological Toxicity Sensor

Iris Trick, Anke Burger Kentischer, Christina Kohl, Christian Kerger (Fraunhofer IGB)
Andreas Jacubasch, Thomas Bernard (Fraunhofer IOSB)

Dresden, 26. June 2018
MOTIVATION AND AIMS

Aim: Enhancement of the biosensor prototype AquaBioTox for broadband detection of chemical contaminants
from a laboratory device with high maintenance effort to a fully automated prototype (targeted maintenance effort ~ 4 weeks)

Fraunhofer IGB: biological part

Fraunhofer IOSB: low cost fluorescence sensor; automation and integration

AquaBioTox prototype (Fraunhofer IGB + IOSB, 2010)
MOTIVATION AND AIMS

Motivation

- Online monitoring of water quality by measuring fluorescence from genetically engineered bacteria (e.g. Ecoli and Caulobacter)

- Industrial Fluorescence measurement systems are very costly (8 – 14 k€, e.g. Algaetorch, bbe Moldenke or FP 360, Hach Lange)

- Targeted costs for online water toxin meters are < 7.000€ for the complete system

Principle of AquaBioTox biosensor:

- Genetically constructed strains of Escherichia coli and Caulobacter vibrioides

- Non pathogenic bacteria (risk group 1)

- Adapted to the normal conditions in water
Main components of the automated sensor system:

- Pressure Reducer
- Valve
- Water Free Fall
- Filter
- Inactivating Unit
- Automated Cartridge Exchanger with Pump and Heating
- Control Units
- Fluorescence Sensor
- Electrical Power
LOW-COST FLUORESCENCE SENSOR

Principle of the low-cost Fluorescence Sensor

- Robust rugged case IP65
- 2 versions of the optical unit
 - Coaxial setup with dichroitic filter
 - 20° Angle setup
- Stable long term behavior
Software modules:

- Lab-Vision with ResiWater project
- PLC program for free fall and inactivator
- Module for fluorescence sensor and data exchange
SAFETY ASPECTS

- Prevention of reflow of contaminations into the water distribution system:
 - No direct connection to the water pipe
 - Water free fall with sensor based level control integrated in the water intake system of the demonstrator

- Prevention of contamination of the environment with micro-organisms by an inactivation unit:
 - Inactivation temperature: 90°C, transient time: 100min
 - Experimental results of microbiological testing: no augmentable bacteria leave the system
BIOSENSOR SYSTEM

β Biosensors:

Bacterial strains:

- strains react on different substances: extended application
- easily handling
- red fluorescence by genetically engineering
- Real time measurement by newly developed fluorescence sensor
BIOSENSOR SYSTEM

Biosensor immobilisation on carrier material:

- **Material:**
 - Porous glass particles (Robu Glass)

- **Advantages:**
 - High amount of biosensor cells available for a significant reaction
 - Biosensor stabilized
 - Preservation for more than 6 month under cooled conditions
 - Long term operation possible
Experimental testing of influence of toxic substances on biosensors in the automated system:
Example: Influence of pH effect on biosensor (E. coli RFP)

Addition of acetic acid pH 4 (1)
Regeneration of fluorescence by addition of water (pH 7) (2)

Reaction time: < 1 min
Experimental Results

Results with selected substances and toxins:
tested by Fraunhofer IGB and TZW

<table>
<thead>
<tr>
<th>Agens</th>
<th>Biosensor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli RFP</td>
<td>Caulobacter vibrioides RFP</td>
<td></td>
</tr>
<tr>
<td>Buffered solution</td>
<td>pH 4</td>
<td>84 %</td>
<td>80 %</td>
</tr>
<tr>
<td></td>
<td>pH 5 - 7</td>
<td>< 3 - 8 %</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>30 %</td>
<td>4.5 %</td>
<td>Not tested</td>
</tr>
<tr>
<td></td>
<td>50 %</td>
<td>40 %</td>
<td></td>
</tr>
<tr>
<td>Substance #1*</td>
<td>42 mg/L</td>
<td>< 2 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Substance #2*</td>
<td>430 mg/L</td>
<td>54 %</td>
<td>< 2 %</td>
</tr>
<tr>
<td>Substance #3*</td>
<td>1 g/L</td>
<td>26 %</td>
<td>< 2 %</td>
</tr>
</tbody>
</table>

*) Name hidden (confidential)

decrease of fluorescence in percentage (%)
EXPERIMENTAL RESULTS

Characterization of the biosensors:

- Biosensor types: 2
 - *Escherichia coli* RFP
 - *Caulobacter vibrioides* RFP

- Method of application: immobilisation on carrier material

- Time for response: < 1 min — real time measurement
- Long term stability tested: 3 weeks
- Storage of biosensors under cooling conditions (8°C): > 6 months
- Availability in the demonstrator:
 - about 6 measurement cells (more are possible) — operation of system theoretically possible for about 6 months
- Before leaving the demonstrator: cells are effectively inactivated by heating (90 °C)
CONCLUSIONS

- The biosensor prototype *AquaBioTox-II* for broadband detection of chemical contaminants has been developed to a fully automated and long term stable system.
- A stable operation for more than 30 days was achieved.
- The targeted maintenance effort of 4 weeks was fulfilled.

Recommendations for future work:

- For robust continuous operation the hydraulic part of the sensor system has to be optimised (pipes, pumps).
- The size of the sensor system could be minimised.