USING TEXT SEGMENTATION ALGORITHMS FOR THE AUTOMATIC GENERATION OF E-LEARNING COURSES

Alexander Streicher, Can Beck, Andrea Zielinski
COLING 2015, Dublin
Agenda

- Introduction & Motivation

- Text Segmenters Application and Experimental Setup
 - Test Corpus
 - Segmentation Algorithms
 - Performance Measures

- Evaluation Results

- Conclusion
Vision & Research Question

Reduce time consuming effort of e-learning course creation – generate courses automatically

When, where and how successful can text segmentation algorithms be applied?
Motivation

Our 2-Level E-Learning Course Structure: Concept Containers (CC) and Knowledge Objects (KO)

- How to project texts on two-level course structure?
- How can we evaluate the usability of text segmentation algorithms for that task?
Setup Overview

Source Test Corpus Segmentation Algorithms Performance Measures

while(noSuccess) {
 tryAgain();
 if(Dead) break;
}
Corpus

- Samples of unstructured text
- Sections from 530 featured Wikipedia articles, 6 categories
 - Ground truth on Macro and micro level to measure segmentation performance
- Macro level low coherence, micro level high coherence
- 1200 macro samples, 8231 micro samples
Segmentation Algorithms

- **Macro Level | Topics | ConceptContainers**
 - TopicTiling (Riedl & Biemann, 2012)

- **Micro Level | Units | KnowledgeObjects**
 - BayesSeg (Eisenstein & Barzily, 2008)
Training & Testing - LDA based segmentation algorithms

e.g. Choi Corpus

<table>
<thead>
<tr>
<th>k</th>
<th>Test Set Size (Macro)</th>
<th>Training Set Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>#samples = 120</td>
<td>139±7 featured Articles (26% of all articles)</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>267±8 featured Articles (51% of all articles)</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>338±7 featured Articles (64% of all articles)</td>
</tr>
</tbody>
</table>

Consequences for the number of folds (k) used in cross validation:

- **10**: 10% of the macro dataset, 120 samples, 139±7 featured articles (26% of all articles).
- **20**: 5% of the macro dataset, 60 samples, 267±8 featured articles (51% of all articles).
- **30**: 3% of the macro dataset, 40 samples, 338±7 featured articles (64% of all articles).
Performance Measures

- Different metrics to measure segmenter performance
 - Penalty metrics
 - Probability Metric (Doug et al. 1998)
 - Window Diff (Pevzner & Hearst, 2002)
 - Rewarding metric
 - Boundary Similarity (Fournier & Inkpen 2013)

- Problem: What does 0.2 mean?
Scalable Segmentation Performance – a new baseline

<table>
<thead>
<tr>
<th>Distance from true boundary</th>
<th>Standard deviation in % of avg. number of sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>very close</td>
<td>$\sigma \in (0, 5]$</td>
</tr>
<tr>
<td>close</td>
<td>$\sigma \in (5, 15]$</td>
</tr>
<tr>
<td>large</td>
<td>$\sigma \in (15, 30]$</td>
</tr>
</tbody>
</table>

![Graph showing the distribution of distances from true boundaries and standard deviations.]
Results for TopicTiling on **Macro Dataset**

Boundary Similarity

With random segmenter as baseline:
Results for BayesSeg on Micro Dataset

Boundary Similarity

Subset

mean

0.0 0.2 0.4 0.6 0.8
3 4 5 6
Subset mean

worst best
very close close large

segmenter

BS σ=1% σ=5% σ=15% σ=30%

© Fraunhofer IOSB Alexander Streicher
Conclusion

- 2-level CC/KO block structure is extracted from unstructured text
- CC/KO structure forms basis for learning objects
- Good results on both levels in relation to own baseline
- Increased interpretability with presented baseline approach

Future Work:

- Comparison of other segmenters with RS on benchmark dataset, to gain unified overview
- Create full e-learning corpus based on real courses for further evaluation
Discussion

Contact:
Alexander.Streicher
@iosb.fraunhofer.de
Related Work

- Model-based; content-generation for e-learning courses based on existing course material
 (Sathiyamurthy & Geetha, 2011)
 - hierarchical domain ontology
 - pedagogical ontology
 - LDA based segmentation

- Adaptation of existing courses to the learner or instructional plans
 - Particle swarm based content organization (Lin et al., 2009)
 - Large-scale course generation (Tan et al., 2010)
References

- Strassel, S., Graff, D., Martey, N. & Cieri, C., 2000. Quality Control in Large Annotation Projects Involving Multiple Judges: The Case of the TDT Corpora. s.l., s.n.