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ABSTRACT 
Personalized learning pathways have been advocated by didactic 

experts to overcome the problem of disorientation and 

information overload in technology enhanced learning (TEL). 

They are not only relevant for providing user-adaptive 

navigational support, but can also be used for composing learning 

objects into new personalized courses (sequencing and assembly). 

In this paper we investigate, how Semantic Web technologies can 

effectively support these tasks, based on a proper representation of 

learning objects and courses according to didactic requirements. 

We claim that both eLearning tasks, adaptive navigation and 

course assembly, call for a representational model that can capture 

the syntax and semantics of learning pathways adequately. In 

particular: (1) a new type of navigation that takes into account 

ordering information and the hierarchical structure of an 

eLearning course complemented with adaptive constraints; (2) 

closely tied to it,  a semantic layer to guarantee interoperability 

and validation of the correctness of the learning pathway 

descriptions. 

We investigate to what extend Semantic Web Languages like 

RDF/S and OWL are expressive enough to handle different 

aspects of learning pathways. While both share a 

structural similarity with DAGs, only OWL ontologies - formally 

underpinned by description logics (DLs) - are expressive enough 

to validate the correctness of the data and infer semantically 

related learning resources on the pathway.  

For tasks that are more related to the syntax of learning pathways, 

in particular navigation similar to a guided tour, we test the time 

efficiency on various synthetic OWL ontologies using the HermiT 

reasoner. Experimental results show that the course structure and 

the density of the knowledge graph impact on the performance. 

We claim that in a dynamically changing environment, where the 

computation of reachability of a vertex is computed on demand at 

run-time, OWL-based reasoning does not scale up well. Using a 

real-world case study from the eLearning domain, we compare an 

OWL 2 DL implementation with an equivalent graph algorithm 

implementation with respect to time efficiency.  

Categories and Subject Descriptors 

K.3 [Computers and Education]. I.2.4 [Knowledge 

Representation Formalisms and Methods] Representation 

languages, Information systems education 

Keywords 

Adaptive Learning Pathways, user guidance, adaptive navigation, 

Semantic Web, guided tour. 

1. INTRODUCTION 
Adaptive navigation support in the Semantic Web is seen as a 

basic requirement for search engine users, because it can help in 

terms of efficiency [1] and user satisfaction, where studies have 

shown that users exploring the web tend to find more diverse and 

novel items [2]. 

In E-learning, adaptive navigation has been advocated specifically 

to overcome the problem of disorientation and information 

overload. Based on the metadata description of the learning 

resources, domain concepts, and a user model that reflects the 

user’s actual learning progress, adaptation techniques to reason 

over Semantic Web data have been suggested (see, e.g., [3,4,15]).  

These systems, however, do not support navigation based on a 

more elaborate sequencing model that has been suggested for the 

description of learning pathways according to e-Learning 

requirement specifications [5], based on modular composition, 

nested composition, optional parts, and sequencing.   

First, we observe that ontology-based approaches to navigation 

exclusively explore binary semantic relationships between 

individual instances. However, more complex relations for 

defining sequences are not easily encoded in RDF/S or OWL, 

including compositionality aspects to account for the structure of 

a course.  

Second, for courseware generation, finding reachable learning 

objects that lay on the learner’s path relative to his/her current 

learning position, is an important subtask for more elaborate tasks 

like inferring successors/predecessors that are similar to a given 

reference learning path. Even though this task mainly involves 

structural aspects of learning pathways and can be handled 

efficiently in isolation, a uniform approach for both syntactic and 

semantic aspects is required. 

The Semantic Web has promising application potentials for TEL. 

It is useful to combine pedagogical, course and domain 

knowledge, which can be highly heterogeneous, into a coherent 

and interoperable framework. To support adaptive navigation and 

courseware assembly, the following basic requirements need to be 

satisfied: 

i. An expressive formalism that is capable of modelling 

personalized learning pathways  

ii. An efficient algorithm to guide the learner and 

sequence the course material based on this formalism.  

We offer a reasoning-based approach that can handle all these 

requirements. It builds on DL and is thus expressed in a 

formalism with a well-defined semantics.  



We present an implementation of learning pathways in OWL 2 

DL where expressive constraints on nodes and edges as well as 

sequential and hierarchical relationships between nodes can all be 

represented in a uniform and declarative way.  

In a dynamically changing environment where the computation 

has to be carried out efficiently at run-time and cannot be pre-

determined, the performance of OWL 2 DL based reasoning 

becomes significant. Reasoning is known to be cost expensive 

with respect to runtime performance due to its theoretical time 

complexity of up to N2EXPTIME in the worst case. 

The main contributions of the paper are as follows: 

(1) First: we define a representation in OWL 2 DL that supports 

semantically-driven navigation and courseware construction. 

Class expressions are set up to perform tasks such as 

reachability within a course unit supplemented with 

additional semantic filters to constrain the navigation. Due to 

its high expressivity, as opposed to DAGs and RDF/S, 

adaptivity can be achieved without duplication of nodes, 

keeping the size of the learning path network small.  

(2) Its limitation is, of course, the scalability: the amount of data 

involved could be high, making the navigation costly. 

Therefore we conduct experiments on the runtime 

performance. In a quantitative evaluation, we test the 

scalability for the HermiT reasoner for a specific 

query/ontology combination, using a graph generator to build 

various synthetic ontologies varying over the course structure 

and the density of the knowledge graph.  

The remainder of the paper is organized as follows. We begin 

with a presentation of related work on navigation in knowledge 

graphs (Section 2). Then, we define the basic properties and the 

structural descriptions of learning pathways on a formal level, 

using the graph metaphor. We show the differences in expressive 

power for various formalisms (DAG, RDF/S, OWL) based on the 

notions sequencing, compositionality, adaptivity, reachability, 

validation and inferencing on learning pathways (Section 3). 

Considering an eLearning scenario in Web Didactics [6], we 

briefly present our OWL 2 DL modelling for navigation in the 

space of learning objects (Section 4). The scalability is measured 

on a case study for a sophisticated navigation task using HermiT. 

This is compared with an alternative graph algorithm in Java of 

the same navigational sequences with respect to run time 

efficiency (Section 5). The paper concludes with a final discussion 

(Section 6).  

2. RELATED WORK 
Pioneering work by Bruslikovsky et al. [7] in the field of adaptive 

hypermedia systems offer an account to navigation in terms of a 

guided tour, i.e. a composite of a sequence of navigational objects 

for which an order is provided, allowing to visit previous, next 

and/or back items, including a structured access. However, while 

the document structure and HTML can provide such an access 

based on a model of hierarchy and sequence, this is not directly 

implemented in RDF [8]. 

The general need for a navigation language for the Web of Data 

has been recognized by various authors (see, e.g. [9]). Some 

expressive declarative specification languages that exploit regular 

expressions on RDF predicates, featuring semantic tests to orient 

the navigation, have been implemented. While SPARQL 1.1 

already allows to define patterns to search for paths of arbitrary 

length via property paths [10], an advanced query optimization 

and runtime processing technique specifically designed for 

reachability queries based on an index integrated into a state-of-

the art RDF processor has been proposed by Gubivech et al. [18]. 

They show that fast graph reachability queries on huge RDF data 

with 100 million facts is feasible within milliseconds. 

In our TEL scenario, the choice of the more expressive Semantic 

Web language OWL has been motivated by the ability 

to represent basic knowledge about learning pathways in an 

intuitive and adequate way from the tutor’s perspective. 

Therefore, representing hierarchically structured sequences and 

semantic constraints in OWL is required.  

A number of best practice pattern have been offered for specific 

tasks involving sequences. Hirsh and Kudenko [12] describe a DL 

pattern based on suffix trees and rewriting. Drummond et al. [13] 

use a linked list pattern in OWL. Finally, Hayes uses n-ary 

relations to define sequences [14]. All of these accounts were 

implemented with a focus on pattern matching, and do not support 

inference of successors/predecessors on structured sequences.  

3. Formal Description 
In this section, we formally describe the notion of ‘navigation 

along learning pathways’ by means of a graph representation of 

the knowledge space.  

We use KO to denote a learning object (small, self-contained, 

reusable unit of learning) that generally forms part of a course or 

Concept Container, denoted by CC. For simplicity, we assume 

that learning pathways are specified as macro-level learning 

pathways (Macro LPs) on the level of CCs, and micro-level 

learning pathways (Micro LPs) on the level of KOs. 

We follow the formal characteristics of a proper learning pathway 

specification as defined by Janssen et al. [5] based on the notions 

of modular composition, nested composition, optional parts, and 

sequencing.  We show the differences in expressive power for 

various formalisms such as DAGs, RDF/S and OWL. 

3.1 From DAGs to RDF to OWL  

DAGs  
The correspondence between learning pathways and Directed 

Acyclic Graphs (DAGs) is straightforward: A learning path can be 

defined syntactically as a sequence of consecutive edges in the 

DAG, i.e. a directed graph with no directed cycle. The length of 

the path is the number of edges traversed. There are selected start 

and end nodes for each path. A directed graph G = (V, E) is an 

ordered pair of disjoint sets (V, E), where E ⊆ V × V. Set V is 

called the vertex or node set, while set E is the edge set of graph 

G. It is assumed that self-loops (i.e. edges of the form (u, u), for 

some u ϵ V) are not contained in the graph.  

A generic task on DAGs is to calculate the Reachability Set of the 

current node v, i.e. the set of vertices for which G contains 

a path (of at least one edge) from v.   

Deciding whether a vertex in a graph is reachable from another 

vertex has been studied intensively in complexity theory and is 

well understood. For DAGs, this can be accomplished in linear 

time with respect to the number of edges |E| in the graph using 

algorithms such as Depth-First or Breadth-First traversal. The 

direct computation of the transitive closure of G may take 

O(|V||E|) of query time in the worst-case. Depending on the 

setting, the reachability of a vertex in a DAG is either computed 

on demand or pre-computed and stored in a separate data 

http://www.boost.org/doc/libs/1_57_0/libs/graph/doc/graph_theory_review.html#def:path
http://en.wikipedia.org/wiki/Linear_time
http://en.wikipedia.org/wiki/Linear_time


structure. In a dynamically changing environment with only a few 

queries, the first option is generally preferred. An alternative 

would be to compute and store the transitive closure of the graph. 

It answers reachability queries in constant time but needs O(n2) 

space to store the transitive closure of an n-vertex graph [16]. 

Labeled DAGs  
Unlabeled DAGs can only express one single relationship 

between any two vertices and generally fall short to define 

optional parts, and thus non-deterministic choices. 

An example of a labeled DAG (see Fig. 1) illustrates the 

difference: For each sequence, i.e. either alternative pathways of 

the same type or different types of pathway (e.g. chronologically 

forward/backward), different labels have to be set up, as indicated 

by the different types of arrows. The three LPs cannot be defined 

in a single DAG (KO13 and KO14 would introduce a loop).  

 

Fig. 1. Capturing different learning pathways 

Furthermore, when traversing the graph from the current learner 

position, individual nodes might need to be semantically checked 

to provide user-adaptation. (Labeled) DAGs can be used not only 

to express syntactic but also semantic information, i.e. by means 

of feature structures. Typically, feature checks on atomic symbols 

or sets of label/value pairs are carried out to guide the navigation: 

Comparing the learning resources to the current learner state (e.g., 

learning speed, etc.), the best matching path can be chosen. As 

indicated in the graph below (see Fig. 2), feature checks are used 

to trigger the selection of KOs. The blue vertex represents the set 

of KOs that fulfil all feature constraints.   

 

Fig. 2. Adaptive Navigation based on Feature Constraints  

In practice, incorporation of feature constraints is also useful to 

minimize the graph, because the learning path description can be 

left partially unspecified. In principle, different LPs can already 

be pre-computed to accommodate for the learners’ static features 

(e.g., language, age, etc.), thereby multiplying the number of 

learning pathways. Generally, there is a tradeoff between storage 

(pre-computing personalized pathways) and processing time: 

adding feature constraints will keep the size of the network small 

but impact on the performance at run-time. 

A major shortcoming of DAGs is, however, that they do not 

exhibit any hierarchical structure, as linking to subgraphs cannot 

be achieved. Capturing the predefined paths can only be achieved 

by spelling out the learning pathways at the terminal level which 

causes a combinatorial explosion of nodes.  

RDF   
The Resource Description Framework (RDF) is a metadata model 

introduced by the W3C for representing information on resources 

in the Semantic Web. It represents data as sets of triples that can 

also be conceived of as a directed labeled graph. Since links are 

semantically labelled, they can also be used to control the 

navigation. While the RDF model is basically a data model 

reflecting the underlying graph structure, an extra semantic layer 

can be built above RDF using RDF Schema, i.e. a primitive 

ontology language which offers a restricted set of modeling 

primitives (e.g. class, subclass, property, etc.). Since learning 

resources are denoted by Internationalized Resource Identifiers 

(IRIs), and thus can be unambiguously identified in different 

contexts, i.e., within different domains, etc., they enable 

interoperability in the Semantic Web.  

Property Graphs 
While the RDF data model intrinsically only supports binary 

relations, at first glance, it seems not expressive enough to 

accommodate for the hierarchical and modular structure of 

learning pathways. A formalism is needed that can directly assert 

a property to a specific edge to represent the fact that the 

hasSuccessor relation between two KOs is valid only in a certain 

course unit (CC). In property graphs, which can be represented in 

RDF by the use of quads (e.g. an extension of a triple, supported 

by the W3C RDF1.1 Recommendation [17]), key/values can be 

associated with both vertices and edges. Figure 3 gives an 

example of a property graph that allows for local restrictions on 

the edges, i.e. the whole triple.  

 

Fig. 3. Property Graph  

SPARQL 1.1, primarily designed for pattern (subgraph) matching, 

also supports path traversal in a property graph and is capable of 

matching paths of arbitrary length [10].  

OWL 2 DL  
The expressive power of learning pathways represented in RDF 

can be further augmented with OWL semantics. OWL 2 DL 

ontologies are grounded in Description Logics, a model-theoretic 

semantics. Restrictions on property values and cardinalities can be 

used by the reasoner to infer new knowledge, such as equality of 

individuals and class membership. With OWL axioms, the 

relationships between KOs, CCs can be formalized (e.g. 

disjointness) and it can be stated that, e.g., every hasSuccessor 

relation is connected by KOs, so that the consistency of the data 

(e.g. existing start and end nodes, no cycles, no KOs appear more 

than once on the path) can be checked automatically. 

Furthermore, the network of learning resources can be further 

enriched, using e.g. owl:sameAs. Learning pathways can be 

inferred that are similar to a reference sequence. In general, all 

explicitly given relationships in the metadata description on the 

Semantic Web could also be exploited.  

Figure 4 gives an illustration of the type of learning path network 

that we seek to model in our approach. It supports the description 

of learning pathways specified as fully connected sequences (from 

a start to an end node) on two hierarchical levels (i.e., CC and 

KO), namely Macro- and Micro learning pathways, used to guide 

the learner towards his/her learning goal.  



 

Our OWL 2 DL Approach   
We offer a new modeling approach for navigational sequences 

which extends previous work in the context of the Pedagogical 

Ontology (PO)[20]. In contrast to related work, learning pathways 

are pre-defined by experts as didactically-meaningful pathways, 

featuring different learning and teaching processes. These might 

intrinsically entail (binary) constraints related to the pre-requisite 

relationship among concepts described in the learning objects.  

Our OWL 2 DL modelling (see also [19]) and reasoner supports 

 retrieving direct and indirect successors and predecessors 

within a Concept Container w.r.t. to a certain learner state, 

including switching to the next level at the end or beginning 

of a Concept Container 

 incorporation of semantic adaptivity constraints on 

successor/predecessor nodes 

 inferring pathways based on semantic attributes, so called 

Knowledge Type or Media Type Pathways, for automatic 

courseware generation  

 

In our approach, learning pathways are represented as ontology 

classes, i.e. generic ontological entities, which are to be extended 

in the ontology framework when defining specific pathways.  

This modeling approach has been chosen instead of representing 

learning pathways as object properties connecting any two KOs 

(CCs, resp.), which are in a direct successor relationship w.r.t. a 

particular learning pathway to increase flexibility in terms of 

allowing tutors to individually specify learning pathways without 

having to alter the (generic) Pedagogical Ontology or modifying 

the ontology vocabulary (schema) by creating new object 

properties. Since OWL does not support the representation of n-

ary relations, it is not possible to specify generic learning pathway 

object properties that can be reused for different pathways. 

Moreover, it is not possible to attach any additional context to a 

specific pathway relation between any KOs (CCs, resp.), e.g., to 

specify that a particular Micro-level learning pathway relation 

between two KOs only holds in a particular CC. As a 

consequence, every learning pathway would require its own 

object property for denoting successor relations. Formally, to 

connect two KOs via a Micro learning pathway, or two CCs via a 

Macro learning pathway, using a connector individual is required.  
We also offer a modelling of Knowledge Type and Media Type 

Pathways. Such pathways provide an ordering w.r.t. the 

Knowledge Type (example, assessment test, etc.) or Media Type 

(e.g., audio, video, text) associated with the resources. The actual 

pathways on the knowledge type level are specified in the same 

way as the Micro- and Macro-level pathways, i.e. Knowledge 

Types KTi and KTj are connected via a learning pathway with a 

connector individual. Provided, the Knowledge Type is specified 

for each KO via the object property hasKnowledgeType the 

predecessor and successor relations on the KO level can be 

inferred via a property chain axiom. Property chain rules are also 

adopted to refer to the transitivity of the hasSuccessor relation. 

 

 

 

 

 

Altogether, four learning pathway related sets are defined by 

OWL class expressions based on the successor/predecessor 

relations and current/previous KOs.  

4. A case study 
For a quantitative evaluation of our sequential navigation scenario 

in OWL 2 DL, we conduct various tests using generated input 

ontologies, which simulate an instantiation of the Pedagogical 

Ontology. We want to access the scalability of a state of the art 

OWL 2 DL reasoner by generating large A-Boxes systematically, 

addressing increasing complexity with respect to various 

characteristics that might involve the reasoning performance. 

While the T-Box is fixed, the A-Box is populated with varying 

numbers of individuals and properties over them.  

We conducted 5 test series, where in each series all ontology 

characteristics are kept constant with only one characteristic 

changing. Each test run was executed two times subsequently in 

order to observe caching effects. All tests were executed on an 

Apple Macbook Pro running on iOSX 10.10, with a 2.3 GHz Intel 

i7 Quadcore processor and 16 GB RAM. 

Ontology generation.  
The ontology generator creates a given number of CCs connected 

randomly via a given number of Macro LPs. Moreover, it 

generates a given number of Knowledge Objects per Concept 

Container connected randomly via a given number of Micro LPs. 

Both Macro- and Micro-LPs can contain branches, which is 

determined by a given branching factor.  

Query execution.  
In the experiments, runtime was measured for the complete 

processing of the generated ontology by the reasoner, which 

involves several invocations for the different instance retrieval 

tasks to be carried out (direct successors of current KO, all 

successors of current KO, all predecessors of current KO, direct 

successors of previous KO). The processing by the QueryBuilder 

also involves instance retrieval for the various criteria correlated 

to user-adaptive features. However, the focus in these experiments 

was on measuring runtime performance for the pathway-related 

queries, neglecting the cost for intensive feature checking.  

Test series.  

Experiment 1 – Increasing number of KOs  
This test demonstrates how runtime performance correlates with 

the number of Knowledge Objects in the input ontology.  The test 

ontologies contain 2 Concept Containers, 1 Micro-level LP, and 1 

Macro-level LP. The test series is executed 2 times (4 times in 

total for measuring cache influence), using a branching factor of 1 

(i.e. no branching) and 10, respectively.  

As Figure 1 shows, runtime increases with the total number of 

KOs.   

Fig. 4. Macro- and Micro-level Learning Pathways  



Moreover it can be observed that a branching factor of 10 roughly 

doubles the runtime compared to no branching. Caching seems to 

have a significant impact on the runtime performance. Regarding 

the cache influence, we could observe an improvement of factor 

3.11 on average with no branching, and factor 2.72 with heavy 

branching, where caching has more effect on smaller ontologies 

than on larger ones. The experiment shows that with no branches 

in the learning pathways, a total number of 400 KOs can be 

processed in about 5 seconds, where with a branching factor 10, 

the same number of KOs take about 11 seconds of execution time 

(with warm caches). 

 

Figure 1. Increasing number of KOs. 2 CCs, 1 MLP, 1mLP 

Experiment 2 – Increasing number of Concept 

Containers 
This test demonstrates how runtime performance correlates with 

the number of Concept Containers in the input ontology.  The test 

ontologies contain a constant number of Knowledge Objects 

(2000) which are equally distributed on the Concept Containers. 

The experiment was conducted with 1 Micro-level LP, 1 Macro-

level LP, and no branching. 

Figure 2 shows that runtime performance improves with an 

increasing number of CCs. This effect, however is most likely 

correlated with the decreasing number of KOs per CC. Again, it 

can be observed that caching has a significant impact on the 

performance. In this experiment, we could observe that runtime is 

on average about 15 times faster when caching effects can be 

exploited. The caching effect becomes more drastic with a larger 

number of CCs. The total number of 2000 KOs could be 

processed in about 2.5 seconds when they are distributed on 100 

CCs (with warm caches). 

 

Figure 2. Increasing number of CCs, constant but equally 

distributed number of KOs, 1MLP, 1mLP 

Experiment 3 – Increasing branching factor 
This test demonstrates how runtime performance correlates with 

the branching of learning pathways.  The test ontologies represent 

a constant setting of 10 CCs, each containing 50 KOs, i.e. 500 

KOs in total. Moreover, a single Micro-level and a single Macro-

level Learning Pathway are modelled. As can be observed from 

Figure 3, increased branching in learning pathways has negligible 

effects on the runtime performance when the branching factor is 

below 10. Again, caching has a positive effect on the runtime 

performance with an improvement of factor 4.68 on average.  

 

Figure 3. Increasing branching factor, 500 KOs distributed on 

10 CCs, 1 mLP, 1MLP 

Experiment 4 – Increasing number of Micro-LPs 
This test demonstrates how runtime performance correlates with 

the number of Micro-level LPs. The test ontologies contain a 

constant number of 500 Knowledge Objects distributed on 10 

Concept Containers. The experiment was conducted with 1 

Macro-level LP and a branching factor of 2.  

 

Figure 4. Increasing number of mLPs, 500 KOs distributed on 

10 CCs, 1MLP, branching factor of 2 

Figure 4 demonstrates that an increasing number of Micro-level 

LPs has an impact on the runtime performance. Caching has a 

positive effect on the runtime performance and improves it by 

factor 8.44 (on average), with decreasing influence with 

increasing number of Micro LPs.  

Experiment 5 – Increasing number of Macro-LPs 
This test demonstrates how runtime performance correlates with 

the number of Macro LPs. The test ontologies contain a constant 

number of 500 Knowledge Objects distributed on 50 Concept 

Containers. The experiment was conducted with 1 Micro LP and a 

branching factor of 2. 

As Figure 5 illustrates, an increasing number of Macro LPs has a 

negative influence on the runtime performance.  This experiment 

shows a drastic effect of caching, in particular with a larger 

number of Macro LPs. The improvement factor of warm caches is 

11.9 on average, slightly decreasing with increasing number of 

MLPs. In absolute numbers, runtime performance remains below 

1.5 seconds for up to 200 Macro LPs with warm caches. 

 

Figure 5. Increasing number of MLPs, 500 KOs distributed on 

50CCs, 1 mLP, branching factor of 2 

Reachability Query using a Graph Algorithm 
We compare the performance for the OWL/HermiT 

implementation and a graph algorithm in Java1. Random DAGs 

                                                                 

1 Graph Algorithm available at http://algs4.cs.princeton.edu/code/  



were generated, varying on the size of the vertices and the 

branching factor (defined as BF= |E | / |V|). Experiments were 

repeated with different seeds. 

For a real curriculum of 125 hours from the domain of Philosophy 

of Didactics which has been modeled in this framework and 

consists of 103 CCs, 1,133 KOs, 4 Macro-level LPs, 2 Micro-

level LPs, the response time with OWL/Hermit was approx. 2.5 

sec with caching, as opposed to 32 msec with the Java-based 

graph algorithm which clearly demonstrates the efficiency of the 

graph-analytic algorithm in reachability queries. 

Yet, the query processing cost has been measured, neglecting the 

cost of feature checking. Since graph algorithms have not been 

optimized for datatype queries, they are generally inferior in this 

respect. While numerous studies on the performance of OWL2 

DL reasoners for datatype queries exist (see, e.g. [21]), we only 

considered the reachability task in this section. 

5. Conclusion 
We have presented a novel approach for modelling complex 

navigational sequences in OWL 2 DL for user guidance. The 

approach is applicable in the Semantic Web context, where 

distributed resources often are already annotated according to 

metadata standards and various open-source domain and user 

ontologies exist. Using the reasoning framework, they can be 

sequenced in a meaningful and user-adaptive way.  

In terms of expressiveness, we show that OWL 2 DL is rich 

enough for interoperability, linking learning resources, as well as 

validating learning pathways. In particular, abstract learning paths 

based on Knowledge and Media Types can be defined. 

We conducted studies on the efficiency of graph traversal, in 

particular reachability queries in OWL 2 DL. Within a dynamic 

setting like the Semantic Web, where storing all 

successors/predecessors for all possible learner states is not 

feasible and feature checks have to be carried out to guide the user 

in an adaptive way, runtime becomes a limiting factor.  

While the focus of our modelling approach to learning pathways 

was mainly on expressivity so far, future work is directed to 

improve its scalability. Therefore, we seek to explore property 

graphs for the syntactic subtask of navigation. Also, for the 

semantic feature queries, we plan to experiment with approximate 

reasoning approaches and less expensive OWL profiles. 

Optimizing query answering for Description Logics is currently 

still very much a research issue. 
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