An Optical Stokes Absolute Roll-angle Sensor with a Full Measurement Range of 360°

Chia-Wei Chen^{1, 2}, Matthias Hartrumpf², Thomas Längle², Jürgen Beyerer^{1, 2}

1. Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

2. Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Fraunhofer-straße 1, 76131 Karlsruhe,

0

 $\lfloor 0$

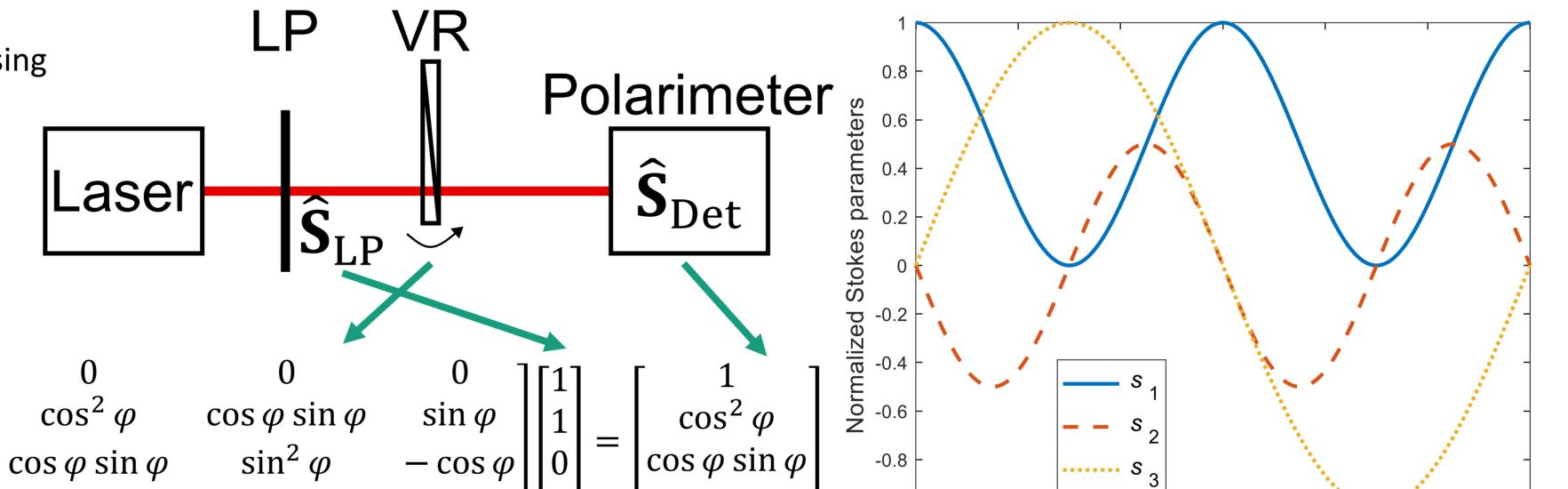
Fraunhofer IOSB

Germany

Motivation

- Precise roll-angle measurement is often required in engineering and scientific instruments, e.g., object tracking,¹ motion of robotics and remote sensing.²
- In general, the polarization-based measurement can provide a large measuring range with a high resolution (subarcminute).³
- However, the unambiguous range of roll-angle measurements by conventional polarization-based methods is limited to 180°.³
- The proposed Stokes roll-angle sensor extended the unambiguous range to 360° by using a vortex retarder as a sensing unit.

Polarized light


The polarization effect of optical elements or interaction at boundaries can be described by Stokes vectors **S** and Mueller matrices M

Stokes vector $\mathbf{S} \in \mathbb{R}^{4 \times 1}$

Schematic of the Stokes Roll-angle Sensor

$$\widehat{\mathbf{S}}_{\text{Det}} = \mathbf{M}_{\text{VR}} \cdot \widehat{\mathbf{S}}_{\text{LF}}$$

- Laser: 635 nm
- Polarimeter: PAX1000VIS, Thorlabs Inc.
- Rotary stage: K10CR1, Thorlabs Inc.
- Vortex retarder (VR) with an offset of 6 mm
- Linear polairzer (LP)

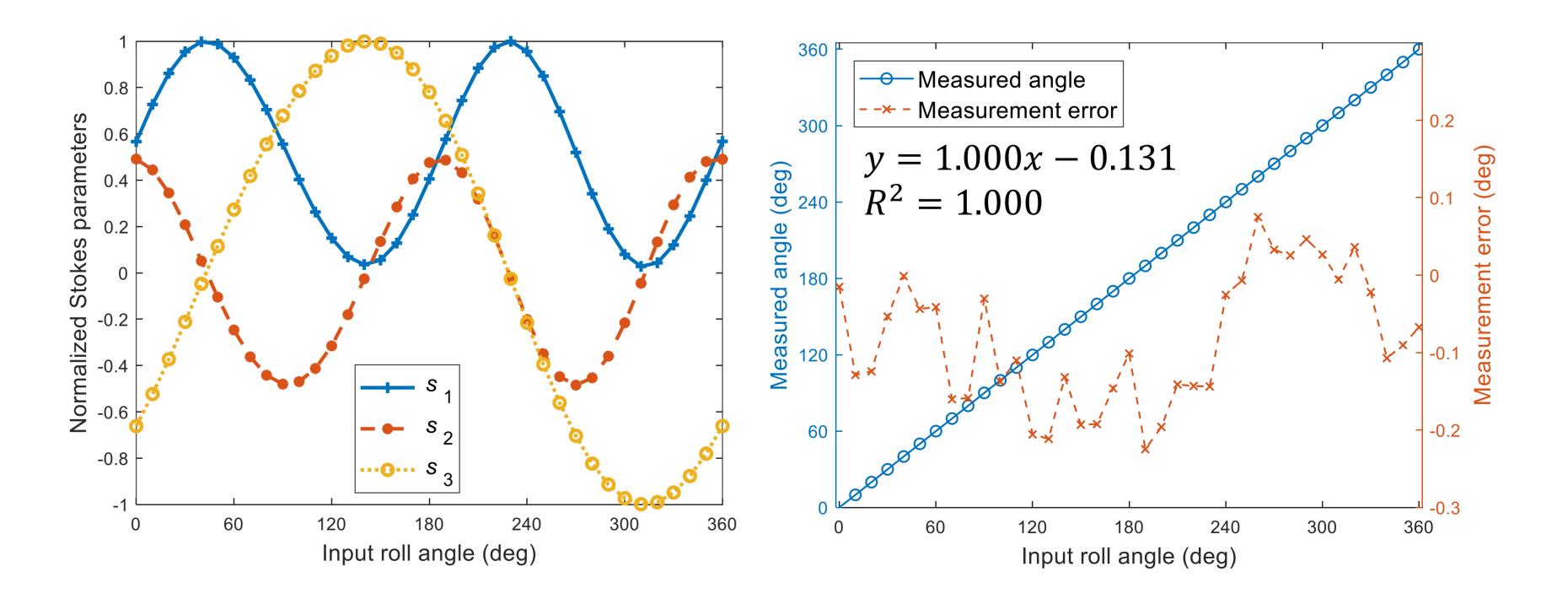
$$- \mathbf{S} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} I_x + I_y \\ I_x - I_y \\ I_{+45^\circ} - I_{-45^\circ} \\ I_R - I_L \end{bmatrix}$$

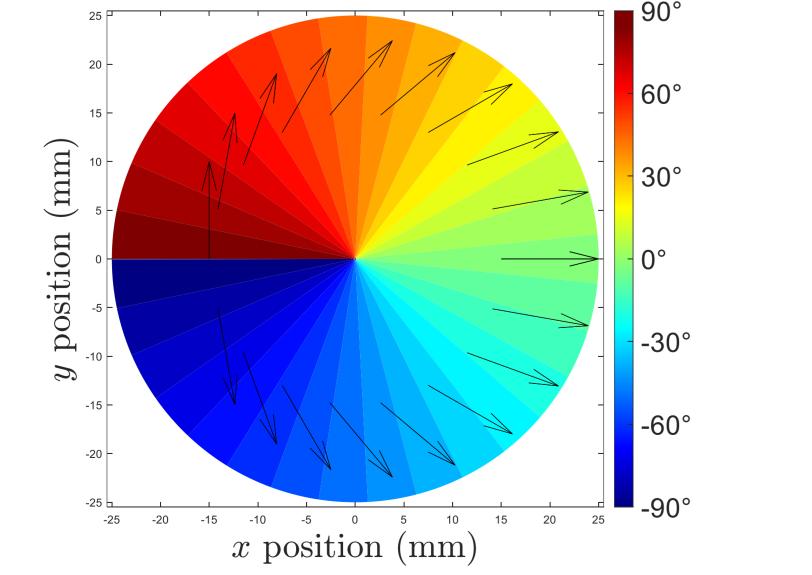
Normalized Stokes vector $\widehat{\mathbf{S}}$ $- \hat{\mathbf{S}} = \frac{\mathbf{s}}{s_0} = \begin{bmatrix} 1 & s_1 & s_2 & s_3 \end{bmatrix}^{\mathrm{T}}$ Mueller matrix $\mathbf{M} \in \mathbb{R}^{4 \times 4}$

$$-\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{bmatrix}$$

Vortex retarder (m = 1)

Fast axis angle: $\theta = \frac{m}{2}\varphi$ Azimuthal angle φ on the waveplate Retardance: $\frac{\pi}{4}$ 0 $\cos^2 \varphi$ $\cos \varphi \sin \varphi$ $\sin^2 \varphi$ $\sin \varphi$ $\blacksquare \mathbf{M}_{\mathrm{RV}} =$ $\cos \varphi \sin \varphi$ $-\cos \varphi$ 0 $-\sin\varphi$ $\cos \varphi$ Fast axis angle


$-\sin \varphi$ $-\sin \varphi$ 0 $\cos \varphi$ 60 120 180 240 360 300 Roll angle (deg)


Data Analysis and Expeimental Results

- Calibration
 - $s_i^{\text{Cal}} = \sum_{j=1}^5 a_j \sin(b_j \varphi + c_j)$
- Numerical fitting

$$-\chi^{2}(\varphi) = \sum_{i=1}^{3} (s_{i}^{\text{Exp}} - s_{i}^{\text{Cal}})^{2}$$

- $\operatorname{argmin}_{\varphi \in [0,360^\circ)} \chi^2$
- Experimental results (5 measurements)
 - Root-mean-squared error: 0.12°

Conclusion and Outlook

- novel Stokes roll-angle sensor with a full measurement range of 360° is proposed.
- The unambiguous measuring range 360° is the largest in optical roll-sensing to date.
- The theoretical resolution is 0.01° (with a 14-bit encoder interpolation).
- Future work will be carried out to further improve the performance and stability of the proposed roll-angle sensor.
- **1** Jeong et al. "Polarized imaging interpreter for simultaneous clocking metrology of multiple objects." *Optics Letters* 46.19 (2021): 4992-4995. 2 Chen et al. "Remote Absolute Roll-Angle Measurement in Range of 180° Based on Polarization Modulation." *Nanomanufacturing and* Metrology 3 (2020): 228-235.
- **3** Chen et al. "Sensitivity enhanced roll-angle sensor by means of a quarter-waveplate." *tm-Technisches Messen* 88.s1 (2021): s48-s52.

