# An Optical Stokes Absolute Roll-angle Sensor with a Full Measurement Range of $360^{\circ}$ 

Fraunhofer

IOSB

## Chia-Wei Chen ${ }^{1,2}$, Matthias Hartrumpf², Thomas Längle², Jürgen Beyerer¹, ${ }^{2}$ <br> 1. Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

2. Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Fraunhofer-straße 1, 76131 Karlsruhe,

Motivation
Schematic of the Stokes Roll-angle Sensor

- Precise roll-angle measurement is often required in engineering and scientific instruments, e.g., object tracking, ${ }^{1}$ motion of robotics and remote sensing. ${ }^{2}$
- In general, the polarization-based measurement can provide a large measuring range with a high resolution (subarcminute). ${ }^{3}$
- However, the unambiguous range of roll-angle measurements by conventional polarization-based methods is limited to $180^{\circ}{ }^{\mathbf{3}}$
- The proposed Stokes roll-angle sensor extended the unambiguous range to $360^{\circ}$ by using a vortex retarder as a sensing unit.


## Polarized light

The polarization effect of optical elements or interaction at boundaries can be described by Stokes vectors $\mathbf{S}$ and Mueller matrices M

- Stokes vector $\mathbf{S} \in \mathbb{R}^{4 \times 1}$

$$
-\mathbf{S}=\left[\begin{array}{l}
S_{0} \\
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right]=\left[\begin{array}{c}
I_{x}+I_{y} \\
I_{x}-I_{y} \\
I_{+45^{\circ}}-I_{-45^{\circ}} \\
I_{\mathrm{R}}-I_{\mathrm{L}}
\end{array}\right]
$$

- Normalized Stokes vector $\hat{\mathbf{S}}$
$-\widehat{\mathbf{S}}=\frac{\mathbf{S}}{s_{0}}=\left[\begin{array}{llll}1 & s_{1} & s_{2} & s_{3}\end{array}\right]^{\mathrm{T}}$
- Mueller matrix $\mathbf{M} \in \mathbb{R}^{4 \times 4}$
$-\mathbf{M}=\left[\begin{array}{llll}M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44}\end{array}\right]$
Vortex retarder ( $m=1$ )
- Fast axis angle: $\theta=\frac{m}{2} \varphi$
- Azimuthal angle $\varphi$ on the waveplate
- Retardance: $\frac{\pi}{4}$
$\mathbf{M}_{\mathrm{RV}}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos ^{2} \varphi & \cos \varphi \sin \varphi & \sin \varphi \\ 0 & \cos \varphi \sin \varphi & \sin ^{2} \varphi & -\cos \varphi \\ 0 & -\sin \varphi & \cos \varphi & 0\end{array}\right]$

- $\hat{\mathbf{S}}_{\text {Det }}=\mathbf{M}_{\mathrm{VR}} \cdot \hat{\mathbf{S}}_{\mathrm{LP}}$
- Laser: 635 nm
- Polarimeter: PAX1000VIS, Thorlabs Inc.
- Rotary stage: K10CR1, Thorlabs Inc.
- Vortex retarder (VR) with an offset of 6 mm
- Linear polairzer (LP)


Data Analysis and Expeimental Results

- Calibration
$-s_{i}^{\mathrm{Cal}}=\sum_{j=1}^{5} a_{j} \sin \left(b_{j} \varphi+c_{j}\right)$
- Numerical fitting
$-\chi^{2}(\varphi)=\sum_{i=1}^{3}\left(s_{i}^{\mathrm{Exp}}-s_{i}^{\mathrm{Cal}}\right)^{2}$
$-\operatorname{argmin}_{\varphi \in\left[0,360^{\circ}\right)} \chi^{2}$
- Experimental results ( 5 measurements)
- Root-mean-squared error: $0.12^{\circ}$



## Conclusion and Outlook

- A novel Stokes roll-angle sensor with a full measurement range of $360^{\circ}$ is proposed.
- The unambiguous measuring range $360^{\circ}$ is the largest in optical roll-sensing to date.
- The theoretical resolution is $0.01^{\circ}$ (with a 14 -bit encoder interpolation).
- Future work will be carried out to further improve the performance and stability of the proposed roll-angle sensor

